過去問.com - 資格試験の過去問 | 予想問題の解説つき無料問題集

第二種電気工事士の過去問「第25317問」を出題

問題

[ 設定等 ]
図のような単相2線式回路で、c-c’間の電圧が99Vのとき、a-a’間の電圧〔V〕は。
ただし、rは電線の抵抗[Ω]とする。
問題文の画像
   1 .
102
   2 .
103
   3 .
104
   4 .
105
( 第二種 電気工事士試験 平成27年度下期 一般問題 )

この過去問の解説 (3件)

このページは設問の個別ページです。
学習履歴を保存するには こちら
評価する
12
評価しない
ぐるっとaからb.c.c'.b'.a'の順に電圧を算出して行ってそれを合計するだけで解く事が出来ます。

まず上段と下段は同じ数値になります。

abは 20×0.1=2V で、bcは 10×0.1=1V で、

それを踏まえてぐるっと合計すると、

2+1+99+1+2=105V となります。

よって答えは「4」となります。
評価後のアイコン
付箋メモを残すことが出来ます。
評価する
4
評価しない
「4」が正答です。

まずそれぞれに流れる電流を求めます。
a-b間、a'-b'間に流れる電流は10+10=20A
b-c間、b'-c'間に流れる電流は10Aです。

次にa-a'間からc-c'間の電圧降下を求めます。
電圧降下式・・・2×I×r
v=2×20×0.1+2×10×0.1=6V
したがってa-a'間の電圧は99+6=105Vとなります。
評価後のアイコン
評価する
3
評価しない
まず問題文よりc-c'間の電圧99【V】が分かっていますので、この値からb-b'間の電圧を求め、そこからa-a'間の電圧を算出していきます。

電圧降下の公式は
V=2I r
で求められますので
I:電流=10A
r:抵抗=0.1Ω
より
V=2×10×0.1=2

この2【V】がb-c回路の間で電圧降下分となります。
なのでc-c'間の電圧にこれを足すことでb-b'間の電圧がわかります。
Vb=Vc+2=99+2=101【V】
となります。

次にa-a'間の電圧を求めます。
同じく
V=2Ir
で算出できますが電流Iがb-b'間とc-c'間に流れているので注意してください。

Va=2×(Ib+Ic)×r=2×(10+10)×0.1=4
4【V】
となり、この電圧降下分を先程算出したb-b'間の電圧に足すことで正解がでます。

Va=Vb+4=101+4=105【V】
よって正解は
【4】
となります。
評価後のアイコン
問題に解答すると、解説が表示されます。
解説が空白の場合は、広告ブロック機能を無効にしてください。
.
設問をランダム順で出題するには こちら
この第二種電気工事士 過去問のURLは  です。

学習履歴の保存や、評価の投稿、付箋メモの利用には無料会員登録が必要です。

確認メールを受け取れるメールアドレスを入力して、送信ボタンを押してください。

※すでに登録済の方はこちら

※利用規約はこちら

メールアドレスとパスワードを入力して「ログイン」ボタンを押してください。

※パスワードを忘れた方はこちら

※新規会員登録はこちら

ログアウトしてもよろしいですか。

パスワードを再発行される場合は、メールアドレスを入力して
「パスワード再発行」ボタンを押してください。

付箋は自分だけが見れます(非公開です)。