過去問.com - 資格試験の過去問 | 予想問題の解説つき無料問題集

第二種電気工事士の過去問 平成26年度下期 一般問題 問8

問題

このページは問題一覧ページです。正解率や解答履歴を残すには、 「新しく条件を設定して出題する」をご利用ください。
[ 設定等 ]
図のような単相3線式回路で、消費電力100[W]、500[W]の2つの負荷はともに抵抗負荷である。図中の×印点で断線した場合、a-b間の電圧[V]は。
ただし、断線によって負荷の抵抗値は変化しないものとする。
問題文の画像
   1 .
33
   2 .
100
   3 .
167
   4 .
200
( 第二種 電気工事士試験 平成26年度下期 一般問題 問8 )

この過去問の解説 (3件)

評価する
27
評価しない
正解は(3)です。

中線が断線すると、直列回路にV=200[V] が加わることになります。
このとき流れる電流I[A]は,抵抗をそれぞれ R1 [Ω]、 R2 [Ω]とすると、以下のように求まります。

I=V/R1+R2=200/100+20≒1.66[A]

なので、オームの法則より、a-b間の電圧Vab[V]は以下のようにも求まります。

Vab=R1×I=100×1.66≒167[V]

以上より、正解は(3)となります。
評価後のアイコン
付箋メモを残すことが出来ます。
評価する
11
評価しない
正解は 3 になります。

設問のように中性線が断線すると、2つの抵抗負荷の回路には単相交流200Vが印加されます。

まず、負荷抵抗に流れる電流Iを求めます。

I=200(V)/(100+20)(Ω)
=5/3 (A)

a-b間の電圧V(V)は

V=100(Ω)×5/3(A)
=167(V)

よって、正解は 3 になります。



評価後のアイコン
評価する
2
評価しない
答えは「3」となります。

オームの法則を使って算出していきます。

 100[Ω]/(100[Ω]+20[Ω])×200[V]=167[V]

となります。
評価後のアイコン
問題に解答すると、解説が表示されます。
解説が空白の場合は、広告ブロック機能を無効にしてください。
.
他のページから戻ってきた時、過去問ドットコムはいつでも続きから始めることが出来ます。
また、広告右上の×ボタンを押すと広告の設定が変更できます。
この第二種電気工事士 過去問のURLは  です。
付箋は自分だけが見れます(非公開です)。