第二種電気工事士の過去問
平成31年度上期
一般問題 問6
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
第二種 電気工事士試験 平成31年度上期 一般問題 問6 (訂正依頼・報告はこちら)
図のような単相2線式回路において、c - c’ 間の電圧が100Vのとき、a - a’ 間の電圧[V]は。
ただし、rは電線の電気抵抗[Ω]とする。
ただし、rは電線の電気抵抗[Ω]とする。
- 102
- 103
- 104
- 105
正解!素晴らしいです
残念...
この過去問の解説 (3件)
01
まずは、電線に流れている電流について考えましょう。
右側の抵抗負荷に10(A)の電流が流れています。ゆえに、b-c間の電線とb'-c'間の電線には10(A)の電流が流れています。
また、a-b間の電線とa'-b'間の電線には、右側の抵抗負荷と左側の抵抗負荷を流れる電流の和である15(A)が流れています。
次にオームの法則を用いて各電線にかかる電圧を求めます。計算すると以下のようになります。
(b-c間の電圧)=10(A)×0.1(Ω)=1.0(V)
(b'-c'間の電圧)=10(A)×0.1(Ω)=1.0(V)
(a-b間の電圧)=15(A)×0.1(Ω)=1.5(V)
(a'-b'間の電圧)=15(A)×0.1(Ω)=1.5(V)
最後にa-a'間の電圧を求めます。
a-a'間の電圧は、a-b間、b-c間、b'-c'間、a'-b'間の電圧と右側の抵抗負荷にかかる電圧を足し合わせたものです。
つまり
(a-a'間の電圧)=1.5+1.0+1.0+1.5+100=105(V)
となります。
ゆえに正解は4番の105(V)です。
参考になった数51
この解説の修正を提案する
02
2:×
3:×
4:○
まず、b-c-c'-b'間の回路に注目します。
b-c間の抵抗に10Aの電流が流れているので、ここにかかる電圧は以下の式になります。
V=IR
=10×0.1
=1 [V]
c'-b'間の抵抗にかかる電圧も同様に求め、1 [V]となります。
続いて、a-b間とb'-a'間に注目すると、こちらはb-b'間とc-c'間を流れる電流の和である15 [A]が流れています。
こちらも同様にa-b間の抵抗にかかる電圧を求めると以下のようになります。
V=IR
=15×0.1
=1.5 [V]
b'-a'間も同様に求めると、1.5 [V]となります。
a-a'間にかかる電圧は、回路全体にかかる電圧と、それぞれの抵抗にかかる電圧の和となり、以下のようになります。
a-a'間の電圧=回路にかかる電圧+(b-c間の電圧)+(c'-b'間の電圧)+(a-b間の電圧)+(b'-a'間の電圧)
=100+1+1+1.5+1.5
=105 [V]
よって、4が正解となります。
参考になった数20
この解説の修正を提案する
03
正解は4です。
この問題は出題科目「電気の基礎理論」からの出題です。
この問題では下記の知識を求められています。
<必要知識>
◯単相2線式の電圧降下を計算できる。
この必要知識に伴う計算式は下記です。
<必要計算式>
・単相2線式の電線の電圧降下=2× 電線の抵抗 r × 電流 I
それでは上記の必要知識及び計算式を使って問題を解いていきます。
まず2つの抵抗負荷に5[A]と10[A]が流れているので、
電源から送り出される総電流は、
5[A]+10[A]=15[A]になります。
この15[A]が流れる電線の電圧降下を計算します。
2× 0.1[Ω]× 15[A]=3[V]になります。
次に10Aが流れる電線の電圧降下を計算します。
2× 0.1[Ω]× 10[A]=2[V]になります。
抵抗負荷にかかる電圧は100[V]のため、この電圧に電線の電圧降下分を足すと、
3[V]+2[V]+100[V]=105[V]
よって正解は4になります。
参考になった数9
この解説の修正を提案する
前の問題(問5)へ
平成31年度上期問題一覧
次の問題(問7)へ