過去問.com - 資格試験の過去問 | 予想問題の解説つき無料問題集

第二種電気工事士の過去問 令和4年度上期 午後 一般問題 問2

問題

このページは問題一覧ページです。正解率や解答履歴を残すには、 「新しく条件を設定して出題する」をご利用ください。
[ 設定等 ]
抵抗率ρ[Ω・m]、直径D[mm]、長さL[m]の導線の電気抵抗[Ω]を表す式は。
   1 .
回答選択肢の画像
   2 .
回答選択肢の画像
   3 .
回答選択肢の画像
   4 .
回答選択肢の画像
( 第二種 電気工事士試験 令和4年度上期 午後 一般問題 問2 )

この過去問の解説 (3件)

評価する
1
評価しない

正解は[1]です。

電気抵抗[Ω]=抵抗率[Ω・m]×長さ[m]÷表面積[m2]になります。

表面積は円なので半径×半径×πになります。直径がDなので半径はD/2になりますので、表面積はπ(D/2)2×10-6になります。(mm→mに換算するため10-6が必要です。

上記の式に当てはめると解答の4ρL/πD2×106が得られます。

ところで、「面積が大きいほど抵抗は低くなり、長さが長いほど抵抗が大きくなる」「表面積は半径の二乗を使う」と覚えておくと、特に計算しなくても分母にDがあり、分子にLがある選択肢が答えと導くことができます。

評価後のアイコン
付箋メモを残すことが出来ます。
評価する
0
評価しない

正解は1の(4ρL/πD)×106です。

まずは、電気抵抗の公式 抵抗値=抵抗率×長さ÷断面積 を思い出してください。

まずは、断面積を求めます。

円の面積の公式は 半径×半径×円周率(π)で表されます。

直径がD[mm]より、半径はD/2となります。

このまま円の面積を求める公式に代入したいところですが、抵抗率の単位に注目すると、[Ω・m]とあります。今の半径の単位は[mm]なので、[m]に変換する必要があります。

[mm]は、[m]の1/1000(10-3)倍です。

つまり、D/2[mm]は(D/2)×10-3[m]と変換できます。

ここで、円の面積を求める公式に代入すると、

(D/2)×10-3×(D/2)×10-3 × π=(D/2)2×10-6× π

となります。

次に、電気抵抗の公式 抵抗値=抵抗率×長さ÷断面積 に代入すると、

抵抗値=ρL/((D/2)2×10-6× π

   =ρL/( D2×10-6× π )/ 4

   =(ρ4L/( D2× π ))× 106

よって、1の(4ρL/πD)×106となります。

評価後のアイコン
評価する
0
評価しない

正解は「1」の(4ρL/πD)×106です。

表面積の公式は半径×半径×πで求めることができます。

A=(D/2×103)×(D/2×103)×π

 =(π×D2/4)×106<m2

そして、電気抵抗率の公式R=ρl/Aから求めることができます。

R=ρl/A

 =ρl/(π×D2/4)×106

 =(4ρL/πD2)×106<Ω>

よって答えは(4ρL/πD)×106の「1」になります。

評価後のアイコン
問題に解答すると、解説が表示されます。
解説が空白の場合は、広告ブロック機能を無効にしてください。
.
他のページから戻ってきた時、過去問ドットコムはいつでも続きから始めることが出来ます。
また、広告右上の×ボタンを押すと広告の設定が変更できます。
この第二種電気工事士 過去問のURLは  です。
付箋は自分だけが見れます(非公開です)。