大学入学共通テスト(数学) 過去問
令和5年度(2023年度)追・再試験
問13 (数学Ⅰ・数学A(第2問) 問1)

このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。

問題

大学入学共通テスト(数学)試験 令和5年度(2023年度)追・再試験 問13(数学Ⅰ・数学A(第2問) 問1) (訂正依頼・報告はこちら)

( アイウ )にあてはまるものを次のうちから1つ選べ。

高校1年生の太郎さんと花子さんのクラスでは、文化祭でやきそば屋を出店することになった。二人は1皿あたりの価格をいくらにするかを検討するためにアンケート調査を行い、1皿あたりの価格と売り上げ数の関係について次のように予測した。

1皿あたりの価格:100円  売り上げ数:1250皿
1皿あたりの価格:150円  売り上げ数:750皿
1皿あたりの価格:200円  売り上げ数:450皿
1皿あたりの価格:250円  売り上げ数:250皿
1皿あたりの価格:300円  売り上げ数:50皿

この結果から太郎さんと花子さんは、1皿あたりの価格が100円以上300円以下の範囲で、予測される利益(以下、利益)の最大値について考えることにした。

太郎:価格を横軸、売り上げ数を縦軸にとって散布図をかいてみたよ。
花子:散布図の点の並びは、1次関数のグラフのようには見えないね。2次関数のグラフみたいに見えるよ。
太郎:価格が100、200、300のときの点を通る2次関数のグラフをかくと、図1のように価格が150、250のときの点もそのグラフの近くにあるよ。
花子:現実には、もっと複雑な関係なのだろうけど、1次関数と2次関数で比べると、2次関数で考えた方がよいような気がするね。

2次関数
y=ax2+bx+c  ・・・・・①
のグラフは、3点(100,1250)、(200,450)、(300,50)を通るとする。このとき、b=( アイウ )である。
  • −13
  • −14
  • −15
  • −16

次の問題へ

正解!素晴らしいです

残念...

この過去問の解説

まだ、解説がありません。