大学入学共通テスト(数学) 過去問
令和4年度(2022年度)本試験
問1 (数学Ⅰ・数学A(第1問) 問1)
問題文
〔1〕実数a,b,cが
a+b+c=1・・・・・①
および
a2+b2+c2=13・・・・・②
を満たしているとする。
(1)(a+b+c)2を展開した式において、①と②を用いると
ab+bc+ca=( アイ )
であることがわかる。よって
(a-b)2+(b-c)2+(c-a)2=( ウエ )
である。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和4年度(2022年度)本試験 問1(数学Ⅰ・数学A(第1問) 問1) (訂正依頼・報告はこちら)
〔1〕実数a,b,cが
a+b+c=1・・・・・①
および
a2+b2+c2=13・・・・・②
を満たしているとする。
(1)(a+b+c)2を展開した式において、①と②を用いると
ab+bc+ca=( アイ )
であることがわかる。よって
(a-b)2+(b-c)2+(c-a)2=( ウエ )
である。
- −3
- −4
- −5
- −6
正解!素晴らしいです
残念...
この過去問の解説
令和4年度(2022年度)本試験 問題一覧
次の問題(問2)へ