大学入学共通テスト(数学) 過去問
令和4年度(2022年度)追・再試験
問53 (数学Ⅰ・数学A(第5問) 問1)

このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。

問題

大学入学共通テスト(数学)試験 令和4年度(2022年度)追・再試験 問53(数学Ⅰ・数学A(第5問) 問1) (訂正依頼・報告はこちら)

以下( ア )・( イ )に当てはまるものを2つ選べ。

(1)円と直線に関する次の定理を考える。

定理
3点P、Q、Rは一直線上にこの順に並んでいるとし、点Tはこの直線上にないものとする。このとき、PQ・PR=PT2が成り立つならば、直線PTは3点Q、R、Tを通る円に接する。

この定理が成り立つことは、次のように説明できる。
直線PTは3点Q、R、Tを通る円Oに接しないとする。このとき、直線PTは円Oと異なる2点で交わる。直線PTと円Oとの交点で点Tとは異なる点をT′とすると

PT・PT′=( ア )・( イ )

が成り立つ。点Tと点T′が異なることにより、PT・PT′の値とPT2の値は異なる。したがって、PQ・PR=PT2に矛盾するので、背理法により、直線PTは3点Q、R、Tを通る円に接するといえる。
  • PQ
  • PR
  • QR
  • QT
  • RT

次の問題へ

正解!素晴らしいです

残念...

この過去問の解説

まだ、解説がありません。