大学入学共通テスト(数学) 過去問
令和4年度(2022年度)追・再試験
問53 (数学Ⅰ・数学A(第5問) 問1)
問題文
(1)円と直線に関する次の定理を考える。
定理
3点P、Q、Rは一直線上にこの順に並んでいるとし、点Tはこの直線上にないものとする。このとき、PQ・PR=PT2が成り立つならば、直線PTは3点Q、R、Tを通る円に接する。
この定理が成り立つことは、次のように説明できる。
直線PTは3点Q、R、Tを通る円Oに接しないとする。このとき、直線PTは円Oと異なる2点で交わる。直線PTと円Oとの交点で点Tとは異なる点をT′とすると
PT・PT′=( ア )・( イ )
が成り立つ。点Tと点T′が異なることにより、PT・PT′の値とPT2の値は異なる。したがって、PQ・PR=PT2に矛盾するので、背理法により、直線PTは3点Q、R、Tを通る円に接するといえる。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和4年度(2022年度)追・再試験 問53(数学Ⅰ・数学A(第5問) 問1) (訂正依頼・報告はこちら)
(1)円と直線に関する次の定理を考える。
定理
3点P、Q、Rは一直線上にこの順に並んでいるとし、点Tはこの直線上にないものとする。このとき、PQ・PR=PT2が成り立つならば、直線PTは3点Q、R、Tを通る円に接する。
この定理が成り立つことは、次のように説明できる。
直線PTは3点Q、R、Tを通る円Oに接しないとする。このとき、直線PTは円Oと異なる2点で交わる。直線PTと円Oとの交点で点Tとは異なる点をT′とすると
PT・PT′=( ア )・( イ )
が成り立つ。点Tと点T′が異なることにより、PT・PT′の値とPT2の値は異なる。したがって、PQ・PR=PT2に矛盾するので、背理法により、直線PTは3点Q、R、Tを通る円に接するといえる。
- PQ
- PR
- QR
- QT
- RT
正解!素晴らしいです
残念...
この過去問の解説
前の問題(問52)へ
令和4年度(2022年度)追・再試験 問題一覧
次の問題(問54)へ