大学入学共通テスト(数学) 過去問
令和5年度(2023年度)本試験
問51 (数学Ⅱ・数学B(第1問) 問3)

このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。

問題

大学入学共通テスト(数学)試験 令和5年度(2023年度)本試験 問51(数学Ⅱ・数学B(第1問) 問3) (訂正依頼・報告はこちら)

〔1〕三角関数の値の大小関係について考えよう。

(2)sinxとsin2xの値の大小関係を詳しく調べよう。
sin2x−sinx=sinx([ ウ ]cosx−[ エ ])
であるから、sin2x−sinx>Oが成り立つことは
「sinx>0 かつ ( ウ )cosx−( エ )>0」  ・・・・・①
または
「sinx<0 かつ ( ウ )cosx−( エ )<0」  ・・・・・②
が成り立つことと同値である。0≦x≦2πのとき、①が成り立つようなxの値の範囲は
0<x<π/( オ )
であり、②が成り立つようなxの値の範囲は
π<x<([ カ ]/[ キ ])π
である。よって、0≦x≦2πのとき、sin2x>sinxが成り立つようなxの値の範囲は

0<x<π/( オ )、

π<x<([ カ ]/[ キ ])π

である。

( ウ )、( エ )にあてはまるものを次のうちから1つ選べ。
  • ウ:3  エ:1
  • ウ:2  エ:1
  • ウ:2  エ:2
  • ウ:2  エ:3

次の問題へ

正解!素晴らしいです

残念...

この過去問の解説

まだ、解説がありません。