大学入学共通テスト(数学) 過去問
令和5年度(2023年度)本試験
問102 (数学Ⅱ・数学B(第4問) 問12)
問題文
花子さんは、毎年の初めに預金口座に一定額の入金をすることにした。この入金を始める前における花子さんの預金は10万円である。ここで、預金とは預金口座にあるお金の額のことである。預金には年利1%で利息がつき、ある年の初めの預金がx万円であれば、その年の終わりには預金は1.01x万円となる。次の年の初めには1.01x万円に入金額を加えたものが預金となる。
毎年の初めの入金額をp万円とし、n年目の初めの預金をan万円とおく。ただし、p>0とし、nは自然数とする。
例えば、a1=10+p、a2=1.01(10+p)+pである。
(3)1年目の入金を始める前における花子さんの預金が10万円ではなく、13万円の場合を考える。すべての自然数nに対して、この場合のn年目の初めの預金はan万円よりも( ソ )万円多い。なお、年利は1%であり、毎年の初めの入金学はp万円のままである。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和5年度(2023年度)本試験 問102(数学Ⅱ・数学B(第4問) 問12) (訂正依頼・報告はこちら)
花子さんは、毎年の初めに預金口座に一定額の入金をすることにした。この入金を始める前における花子さんの預金は10万円である。ここで、預金とは預金口座にあるお金の額のことである。預金には年利1%で利息がつき、ある年の初めの預金がx万円であれば、その年の終わりには預金は1.01x万円となる。次の年の初めには1.01x万円に入金額を加えたものが預金となる。
毎年の初めの入金額をp万円とし、n年目の初めの預金をan万円とおく。ただし、p>0とし、nは自然数とする。
例えば、a1=10+p、a2=1.01(10+p)+pである。
(3)1年目の入金を始める前における花子さんの預金が10万円ではなく、13万円の場合を考える。すべての自然数nに対して、この場合のn年目の初めの預金はan万円よりも( ソ )万円多い。なお、年利は1%であり、毎年の初めの入金学はp万円のままである。
- 3
- 13
- 3(n−1)
- 3n
- 13(n−1)
- 13n
- 3n
- 3+1.01(n−1)
- 3✕1.01n−1
- 3✕1.01n
- 13✕1.01n−1
- 13✕1.01n
正解!素晴らしいです
残念...
この過去問の解説
前の問題(問101)へ
令和5年度(2023年度)本試験 問題一覧
次の問題(問103)へ