大学入学共通テスト(数学) 過去問
令和4年度(2022年度)追・再試験
問84 (数学Ⅱ・数学B(第2問) 問7)
問題文
kを実数とし
f(x)=x3−kx
とおく。また、座標平面上の曲線y=f(x)をCとする。
必要に応じて、次のことを用いてもよい。
<曲線Cの平行移動>
曲線Cをx軸方向にp、y軸方向にqだけ平行移動した曲線の方程式は
y=(x−p)3−k(x−p)+q
である。
(1)tを実数とし
g(x)=(x−t)3−k(x−t)
とおく。また、座標平面上の曲線y=g(x)をC1とする。
(ⅱ)t=1とする。また、曲線CとC1は2点で交わるとし、一つの交点のx座標は−2であるとする。このとき、k=( キク )であり、もう一方の交点のx座標は( ケ )である。
また、CとC1で囲まれた図形のうち、x≧0の範囲にある部分の面積は( コサ )/( シ )である。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和4年度(2022年度)追・再試験 問84(数学Ⅱ・数学B(第2問) 問7) (訂正依頼・報告はこちら)
kを実数とし
f(x)=x3−kx
とおく。また、座標平面上の曲線y=f(x)をCとする。
必要に応じて、次のことを用いてもよい。
<曲線Cの平行移動>
曲線Cをx軸方向にp、y軸方向にqだけ平行移動した曲線の方程式は
y=(x−p)3−k(x−p)+q
である。
(1)tを実数とし
g(x)=(x−t)3−k(x−t)
とおく。また、座標平面上の曲線y=g(x)をC1とする。
(ⅱ)t=1とする。また、曲線CとC1は2点で交わるとし、一つの交点のx座標は−2であるとする。このとき、k=( キク )であり、もう一方の交点のx座標は( ケ )である。
また、CとC1で囲まれた図形のうち、x≧0の範囲にある部分の面積は( コサ )/( シ )である。
- コサ:81 シ:2
- コサ:82 シ:3
- コサ:91 シ:2
- コサ:92 シ:3
正解!素晴らしいです
残念...
この過去問の解説
前の問題(問83)へ
令和4年度(2022年度)追・再試験 問題一覧
次の問題(問85)へ