大学入学共通テスト(数学) 過去問
令和4年度(2022年度)追・再試験
問91 (数学Ⅱ・数学B(第2問) 問14)
問題文
kを実数とし
f(x)=x3−kx
とおく。また、座標平面上の曲線y=f(x)をCとする。
必要に応じて、次のことを用いてもよい。
<曲線Cの平行移動>
曲線Cをx軸方向にp、y軸方向にqだけ平行移動した曲線の方程式は
y=(x−p)3−k(x−p)+q
である。
(2)a、b、cを実数とし
h(x)=x3+3ax2+bx+c
とおく。また、座標平面上の曲線y=h(x)をC2とする。
(ⅰ)曲線Cを平行移動して、C2と一致させることができるかどうかを考察しよう。Cをx軸方向にp、y軸方向にqだけ平行移動した曲線がC2と一致するとき
h(x)=(x−p)3−k(x−p)+q ・・・・・・①
である。よって、p=( スセ )、b=( ソ )p2−kであり
k=( タ )a2−b ・・・・・・②
である。また、①において、x=pを代入すると、q=h(p)=h([ スセ ])
となる。
逆に、kが②を満たすとき、Cをx軸方向に( スセ )、y軸方向にh([ スセ ])だけ平行移動させるとC2と一致することが確かめられる。
(ⅱ)b=3a2−3とする。このとき、曲線C2は曲線
y=x3−( チ )x
を平行移動したものと一致する。よって、h(x)がx=4で極大値3をとるとき、h(x)はx=( ツ )で極小値( テト )をとることがわかる。
(ⅲ)次のうち、平行移動によって一致させることができる二つの異なる曲線は( ナ )と( ニ )である。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和4年度(2022年度)追・再試験 問91(数学Ⅱ・数学B(第2問) 問14) (訂正依頼・報告はこちら)
kを実数とし
f(x)=x3−kx
とおく。また、座標平面上の曲線y=f(x)をCとする。
必要に応じて、次のことを用いてもよい。
<曲線Cの平行移動>
曲線Cをx軸方向にp、y軸方向にqだけ平行移動した曲線の方程式は
y=(x−p)3−k(x−p)+q
である。
(2)a、b、cを実数とし
h(x)=x3+3ax2+bx+c
とおく。また、座標平面上の曲線y=h(x)をC2とする。
(ⅰ)曲線Cを平行移動して、C2と一致させることができるかどうかを考察しよう。Cをx軸方向にp、y軸方向にqだけ平行移動した曲線がC2と一致するとき
h(x)=(x−p)3−k(x−p)+q ・・・・・・①
である。よって、p=( スセ )、b=( ソ )p2−kであり
k=( タ )a2−b ・・・・・・②
である。また、①において、x=pを代入すると、q=h(p)=h([ スセ ])
となる。
逆に、kが②を満たすとき、Cをx軸方向に( スセ )、y軸方向にh([ スセ ])だけ平行移動させるとC2と一致することが確かめられる。
(ⅱ)b=3a2−3とする。このとき、曲線C2は曲線
y=x3−( チ )x
を平行移動したものと一致する。よって、h(x)がx=4で極大値3をとるとき、h(x)はx=( ツ )で極小値( テト )をとることがわかる。
(ⅲ)次のうち、平行移動によって一致させることができる二つの異なる曲線は( ナ )と( ニ )である。
- y=x3−x−5
- y=x3+3x2−2x−4
- y=x3−6x2−x−4
- y=x3−6x2+7x−5
正解!素晴らしいです
残念...
この過去問の解説
前の問題(問90)へ
令和4年度(2022年度)追・再試験 問題一覧
次の問題(問92)へ