大学入学共通テスト(数学) 過去問
令和5年度(2023年度)本試験
問6 (数学Ⅰ・数学A(第1問) 問6)
問題文
〔2〕(1)点Oを中心とし、半径が5である円Oがある。この円周上に2点A、BをAB=6となるようにとる。また、円Oの円周上に、2点A、Bとは異なる点Cをとる。
(ⅰ)sin∠ACB=( サ )である。また、点Cを∠ACBが鈍角となるようにとるとき、cos∠ACB=( シ )である。
(ⅱ)点CをΔABCの面積が最大となるようにとる。点Cから直線ABに垂直な直線を引き、直線ABとの交点をDとするとき、
tan∠OAD=( ス )である。また、ΔABCの面積は( セソ )である。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和5年度(2023年度)本試験 問6(数学Ⅰ・数学A(第1問) 問6) (訂正依頼・報告はこちら)
〔2〕(1)点Oを中心とし、半径が5である円Oがある。この円周上に2点A、BをAB=6となるようにとる。また、円Oの円周上に、2点A、Bとは異なる点Cをとる。
(ⅰ)sin∠ACB=( サ )である。また、点Cを∠ACBが鈍角となるようにとるとき、cos∠ACB=( シ )である。
(ⅱ)点CをΔABCの面積が最大となるようにとる。点Cから直線ABに垂直な直線を引き、直線ABとの交点をDとするとき、
tan∠OAD=( ス )である。また、ΔABCの面積は( セソ )である。
- 3/5
- 3/4
- 4/5
- 1
- 4/3
- −3/5
- −3/4
- −4/5
- −1
- −4/3
正解!素晴らしいです
残念...
この過去問の解説
前の問題(問5)へ
令和5年度(2023年度)本試験 問題一覧
次の問題(問7)へ