第三種電気主任技術者の過去問
令和元年度(2019年)
電力 問42
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
第三種 電気主任技術者試験 令和元年度(2019年) 電力 問42 (訂正依頼・報告はこちら)
三相3線式配電線路の受電端に遅れ力率0.8の三相平衡負荷60kW(一定)が接続されている。次の問に答えよ。
ただし、三相負荷の受電端電圧は6.6kV一定とし、配電線路のこう長は2.5km、電線1線当たりの抵抗は0.5Ω/km、リアクタンスは0.2Ω/kmとする。なお、送電端電圧と受電端電圧の位相角は十分小さいものとして得られる近似式を用いて解答すること。また、配電線路こう長が短いことから、静電容量は無視できるものとする。
受電端の電圧降下率を2.0%以内にする場合、受電端でさらに増設できる負術電力(最大)の値[kW]として、最も近いものを次の( 1 )~( 5 )のうちから一つ選べ。ただし、負荷の力率(遅れ)は変わらないものとする。
ただし、三相負荷の受電端電圧は6.6kV一定とし、配電線路のこう長は2.5km、電線1線当たりの抵抗は0.5Ω/km、リアクタンスは0.2Ω/kmとする。なお、送電端電圧と受電端電圧の位相角は十分小さいものとして得られる近似式を用いて解答すること。また、配電線路こう長が短いことから、静電容量は無視できるものとする。
受電端の電圧降下率を2.0%以内にする場合、受電端でさらに増設できる負術電力(最大)の値[kW]として、最も近いものを次の( 1 )~( 5 )のうちから一つ選べ。ただし、負荷の力率(遅れ)は変わらないものとする。
- 476
- 536
- 546
- 1280
- 1340
正解!素晴らしいです
残念...
この過去問の解説 (2件)
01
電圧降下率の定義から電圧降下ΔEは
ΔE/6.6e3 = 2/100
よってΔE=132 V
またΔE=√3I*(Rcosθ+Xsinθ)であり
R = 0.5*2.5=1.25Ω
X = 0.2*2.5=0.5Ω
cosθ=0.8
sinθ=√(1-cosθ*cosθ)=0.6を代入して
I≒58.6 A
よって受電端に接続できる最大電力は
√3*6.6 * 58.6*cosθ≒536 kW
既に三相負荷60kWg接続されているので、増設できるのは
536-60=476kW
正解は1です。
参考になった数5
この解説の修正を提案する
02
【解答の方針】
送電端電圧と受電端電圧の位相角は十分小さいものとして得られる近似式を用います。
ES ≒ ER + I ( rcosθ + xsinθ )
【解答】
1、題意にて提示されている値から代入すべき値を洗い出します。
・ER = 6600/√3 [V]
・r = 0.5×2.5 = 1.25 [Ω]
・x = 0.2×2.5 = 0.5 [Ω]
・cosθ = 0.8
・sinθ = √(1-0.8^2) = 0.6
・ (電圧降下率2%より) ER = 0.98ES
ES = ER / 0.98 = 6600/√3/0.98 = 6735/√3 [kV]
2、式を変形して、Iを求めます。
I = ( ES - ER ) / ( rcosθ + xsinθ )
= ( 6735/√3 - 6600/√3 ) / (1.25 × 0.8 + 0.5 × 0.8)
≒60[A]
3、電圧降下率2%時の受電端負荷PR’を求めます。
PR’=√3VRIcosθより
=√3×6.6×60×0.8
=548.7[kW]
4、受電端でさらに増設できる負荷電力の値を求めます。
PR'-PR=548.7-60=488.7[kW]
参考になった数1
この解説の修正を提案する
前の問題(問41)へ
令和元年度(2019年)問題一覧
次の問題(問43)へ