1級電気工事施工管理技士の過去問
令和元年度(2019年)
午前 イ 問5

このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。

問題

1級 電気工事施工管理技術検定試験 令和元年度(2019年) 午前 イ 問5 (訂正依頼・報告はこちら)

図に示す回路を論理式に置き換えたものとして、正しいものはどれか。
問題文の画像
  • A + B + C = Z
  • A ・ B ・ C = Z
  • ( A + B )・ C = Z
  • A ・( B + C ) = Z

次の問題へ

正解!素晴らしいです

残念...

この過去問の解説 (3件)

01

正解は【4】です。

電気図から、AとBまたはAとCの両方の接点が閉じたときに
Zのコイルに電気が流れ、Zの接点が閉じるようになっています。

論理式の考え方として1か0(真か偽)の2状態で表します
この問題では回路のONかOFFとして考えます。

論理式の基本となるのは、次の3通りで、
論理変数をAとBとした場合、
・論理積(AND);A・B
 AとBのともに1の場合、1となる
・論理和(OR);A + B
 AとBいずれか1のとき、あるいはともに1のとき
 1となる
・否定(NOT);AのときAではない
 1のとき0 0のとき1となる

問題のZが1(ON)となる場合は、AとBが1(ON)になった時、
またはAとCが1(ON)になった時、または両方がONになった時です。
AとB、AとCはともに論理積の関係です。
A・B回路とA・C回路は論理和の関係です。
式として表すと 
A・B + A・C=Zとして表せます。
上の式は変換すると
A・(B + C)=Z として表せます。

参考になった数24

02

正解は、4 です。

この回路のZがオン(真もしくは1)となる条件は、
「Aが必ずオンであり、かつ、BもしくはCがオンである」ことです。

このことからBとCの関係はOR(”もしくは”)(論理式の演算子では+)であること、この「BとC」と「A」との関係はAND(”かつ”)(論理式の演算子では×)でなければならないことが分かります。

よってA ×( B + C ) となります。

参考になった数13

03

論理回路を論理式に表すときに関する問題です。

選択肢1. A + B + C = Z

×

A or B or C

A か B か C が入れば Z が動作するという意味になり、Z は ON となりません。

選択肢2. A ・ B ・ C = Z

×

A and B and C

A も B も C も入れば、Z が動作するという意味で、Z は ON となります。

しかし、図の論理は、A が入れば、B か C が入れば、Z が動作して、Z が ON となる論理ですので、誤りです。

選択肢3. ( A + B )・ C = Z

×

(A or B) and C

A か B が入って、 C が入れば Z が動作するという意味で、Z は ON となりません。

選択肢4. A ・( B + C ) = Z

A and (B or C)

A が入って、B か C が入れば Z が動作し、Z が ON となります。

図の論理通りの論理式です。

参考になった数6