過去問.com - 資格試験の過去問 | 予想問題の解説つき無料問題集

技術士「基礎科目「設計・計画に関するもの」」の過去問をランダムに出題

問題

下図に示されるように、信頼度が0.7であるn個の要素が並列に接続され、さらに信頼度0.95の1個の要素が直列に接続されたシステムを考える。それぞれの要素は互いに独立であり、nは2以上の整数とする。システムの信頼度が0.94以上となるために必要なnの最小値について、最も適切なものはどれか。
問題文の画像
   1 .
2
   2 .
3
   3 .
4
   4 .
5
   5 .
nに依らずシステムの信頼度は0.94未満であり、最小値は存在しない。
( 技術士 第一次試験 令和2年度(2020年) 基礎科目「設計・計画に関するもの」 )

この過去問の解説 (2件)

学習履歴が保存されていません。
他ページから戻ってきた時に、続きから再開するには、
会員登録(無料)が必要です。
評価する
4
評価しない

システムの信頼性を構成図から読み取る問題です。技術士としての基本技能になりますので、試験でも頻出の問題です。

まず、システム要素が全て直列に並ぶ時のシステム全体の信頼度は、各要素の信頼度の総積となりますので、この場合は、第1要素・・・第n要素が並列に並んだシステムの信頼度をR1、このシステム全体の信頼度をRとすると、

R= R1x0.95となります。

システム全体の信頼度Rが0.94となるためには、R1=0.94/0.95≒0.989となります。

つづいて、R1は、各要素が並列に並んだシステムの信頼度ですので、各要素の信頼度をRa,Rb,Rc,・・・Rnとすると、

R1=1-{(1-Ra)(1-Rb)(1-Rc)・・・(1-Rn)}と表すことができます。ここで、Ra=Rb=Rc=・・・=Rn=0.7ですから、

R1=1-(1-0.7)n=1-0.3nと表すことができます。

続いて、R1が0.989を超えるように、nに要素数を順次入れて計算していきます。

要素数2の場合 1-0.32=0.91

要素数3の場合 1-0.33=0.973

要素数4の場合 1-0.34=0.9919

以上より、R1が0.989を超える、つまり、システム全体の信頼度が0.94以上になるために必要なnの値は4となり、正解選択肢は3.となります。

評価後のアイコン
付箋メモを残すことが出来ます。
評価する
1
評価しない
2つ以上の要素が並列に接続し1つのモデルと直列に接続した信頼度の問題です。
要素が直列に並ぶ時の信頼度は、
それぞれの要素AとBの信頼度をRA,RBとした場合、
システム全体の信頼度Rは
R=RA✖️RBで示します。
一方、要素が並列に並ぶ時の信頼度は
R=1-(1-RA)(1-RB)で示します。

今回の問題では
R={1-(1-第1要素の信頼度)(1-第2要素の信頼度)(1-第n要素の信頼度)}✖️0.95になります
各要素の信頼度は同じ0.7になりますので
R={1-(1-0.3)^n}✖️0.95となります。
システムの信頼度が0.94以上になるためには
{1-(1-0.3)^n}をPとおくと
R=0.95P
Rは最低0.94である必要があるため、0.94とすると
0.94=0.95P
P=0.94÷0.95=0.989となります。

Pが0.989を超えるnの値を求めます。
各要素数における、Pの値は
第2要素までの場合:1-(1-0.7)^2=0.91
第3要素までの場合:1-(1-0.7)^3=0.973
第4要素までの場合:1-(1-0.7)^4=0.992

したがって、システムの信頼度が0.94以上になるために必要なnの値は、4になります。
評価後のアイコン
問題に解答すると、解説が表示されます。
解説が空白の場合は、広告ブロック機能を無効にしてください。
.
設問を通常順で出題するには こちら
この技術士 過去問のURLは  です。

学習履歴の保存や、評価の投稿、付箋メモの利用には無料会員登録が必要です。

確認メールを受け取れるメールアドレスを入力して、送信ボタンを押してください。

※すでに登録済の方はこちら

※利用規約はこちら

メールアドレスとパスワードを入力して「ログイン」ボタンを押してください。

※パスワードを忘れた方はこちら

※新規会員登録はこちら

ログアウトしてもよろしいですか。

パスワードを再発行される場合は、メールアドレスを入力して
「パスワード再発行」ボタンを押してください。

付箋は自分だけが見れます(非公開です)。